RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2013, том 9, 033, 27 стр. (Mi sigma816)

Эта публикация цитируется в 4 статьях

The Symmetry Group of Lamé's System and the Associated Guichard Nets for Conformally Flat Hypersurfaces

João Paulo dos Santos, Keti Tenenblat

Departamento de Matemática, Universidade de Brasília, 70910-900, Brasília-DF, Brazil

Аннотация: We consider conformally flat hypersurfaces in four dimensional space forms with their associated Guichard nets and Lamé's system of equations. We show that the symmetry group of the Lamé's system, satisfying Guichard condition, is given by translations and dilations in the independent variables and dilations in the dependents variables. We obtain the solutions which are invariant under the action of the 2-dimensional subgroups of the symmetry group. For the solutions which are invariant under translations, we obtain the corresponding conformally flat hypersurfaces and we describe the corresponding Guichard nets. We show that the coordinate surfaces of the Guichard nets have constant Gaussian curvature, and the sum of the three curvatures is equal to zero. Moreover, the Guichard nets are foliated by flat surfaces with constant mean curvature. We prove that there are solutions of the Lamé's system, given in terms of Jacobi elliptic functions, which are invariant under translations, that correspond to a new class of conformally flat hypersurfaces.

Ключевые слова: conformally flat hypersurfaces; symmetry group; Lamé's system; Guichard nets.

MSC: 53A35; 53C42

Поступила: 1 октября 2012 г.; в окончательном варианте 12 апреля 2013 г.; опубликована 17 апреля 2013 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2013.033



Реферативные базы данных:
ArXiv: 1304.4694


© МИАН, 2024