RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2013, том 9, 040, 29 стр. (Mi sigma823)

Эта публикация цитируется в 14 статьях

Dunkl Operators as Covariant Derivatives in a Quantum Principal Bundle

Micho Ðurđevicha, Stephen Bruce Sontzb

a Instituto de Matemáticas, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, CP 04510, Mexico City, Mexico
b Centro de Investigación en Matemáticas, A.C. (CIMAT), Jalisco s/n, Mineral de Valenciana, CP 36240, Guanajuato, Gto., Mexico

Аннотация: A quantum principal bundle is constructed for every Coxeter group acting on a finite-dimensional Euclidean space $E$, and then a connection is also defined on this bundle. The covariant derivatives associated to this connection are the Dunkl operators, originally introduced as part of a program to generalize harmonic analysis in Euclidean spaces. This gives us a new, geometric way of viewing the Dunkl operators. In particular, we present a new proof of the commutativity of these operators among themselves as a consequence of a geometric property, namely, that the connection has curvature zero.

Ключевые слова: Dunkl operators; quantum principal bundle; quantum connection; quantum curvature; Coxeter groups.

MSC: 20F55; 81R50; 81R60

Поступила: 1 ноября 2012 г.; в окончательном варианте 17 мая 2013 г.; опубликована 30 мая 2013 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2013.040



Реферативные базы данных:
ArXiv: 1108.3769


© МИАН, 2024