RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2013, том 9, 049, 23 стр. (Mi sigma832)

Эта публикация цитируется в 12 статьях

A Common Structure in PBW Bases of the Nilpotent Subalgebra of $U_q(\mathfrak{g})$ and Quantized Algebra of Functions

Atsuo Kunibaa, Masato Okadob, Yasuhiko Yamadac

a Institute of Physics, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Tokyo 153-8902, Japan
b Department of Mathematical Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
c Department of Mathematics, Faculty of Science, Kobe University, Hyogo 657-8501, Japan

Аннотация: For a finite-dimensional simple Lie algebra $\mathfrak{g}$, let $U^+_q(\mathfrak{g})$ be the positive part of the quantized universal enveloping algebra, and $A_q(\mathfrak{g})$ be the quantized algebra of functions. We show that the transition matrix of the PBW bases of $U^+_q(\mathfrak{g})$ coincides with the intertwiner between the irreducible $A_q(\mathfrak{g})$-modules labeled by two different reduced expressions of the longest element of the Weyl group of $\mathfrak{g}$. This generalizes the earlier result by Sergeev on $A_2$ related to the tetrahedron equation and endows a new representation theoretical interpretation with the recent solution to the 3D reflection equation for $C_2$. Our proof is based on a realization of $U^+_q(\mathfrak{g})$ in a quotient ring of $A_q(\mathfrak{g})$.

Ключевые слова: quantized enveloping algebra; PBW bases; quantized algebra of functions; tetrahedron equation.

MSC: 17B37; 20G42; 81R50; 17B80

Поступила: 19 марта 2013 г.; в окончательном варианте 10 июля 2013 г.; опубликована 19 июля 2013 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2013.049



Реферативные базы данных:
ArXiv: 1302.6298


© МИАН, 2024