RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2013, том 9, 053, 19 стр. (Mi sigma836)

Эта публикация цитируется в 8 статьях

Parameterizing the Simplest Grassmann–Gaussian Relations for Pachner Move 3–3

Igor G. Korepanova, Nurlan M. Sadykov

a Moscow State University of Instrument Engineering and Computer Sciences, 20 Stromynka Str., Moscow 107996, Russia

Аннотация: We consider relations in Grassmann algebra corresponding to the four-dimensional Pachner move 3–3, assuming that there is just one Grassmann variable on each 3-face, and a 4-simplex weight is a Grassmann–Gaussian exponent depending on these variables on its five 3-faces. We show that there exists a large family of such relations; the problem is in finding their algebraic-topologically meaningful parameterization. We solve this problem in part, providing two nicely parameterized subfamilies of such relations. For the second of them, we further investigate the nature of some of its parameters: they turn out to correspond to an exotic analogue of middle homologies. In passing, we also provide the 2–4 Pachner move relation for this second case.

Ключевые слова: four-dimensional Pachner moves; Grassmann algebras; Clifford algebras; maximal isotropic Euclidean subspaces.

MSC: 15A75; 57Q99; 57R56

Поступила: 15 мая 2013 г.; в окончательном варианте 8 августа 2013 г.; опубликована 13 августа 2013 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2013.053



Реферативные базы данных:
ArXiv: 1305.3246


© МИАН, 2024