RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2013, том 9, 068, 39 стр. (Mi sigma851)

Эта публикация цитируется в 4 статьях

Ultradiscrete sine-Gordon Equation over Symmetrized Max-Plus Algebra, and Noncommutative Discrete and Ultradiscrete sine-Gordon Equations

Kenichi Kondo

5-13-12-207 Matsubara, Setagaya-ku, Tokyo 156-0043, Japan

Аннотация: Ultradiscretization with negative values is a long-standing problem and several attempts have been made to solve it. Among others, we focus on the symmetrized max-plus algebra, with which we ultradiscretize the discrete sine-Gordon equation. Another ultradiscretization of the discrete sine-Gordon equation has already been proposed by previous studies, but the equation and the solutions obtained here are considered to directly correspond to the discrete counterpart. We also propose a noncommutative discrete analogue of the sine-Gordon equation, reveal its relations to other integrable systems including the noncommutative discrete KP equation, and construct multisoliton solutions by a repeated application of Darboux transformations. Moreover, we derive a noncommutative ultradiscrete analogue of the sine-Gordon equation and its 1-soliton and 2-soliton solutions, using the symmetrized max-plus algebra. As a result, we have a complete set of commutative and noncommutative versions of continuous, discrete, and ultradiscrete sine-Gordon equations.

Ключевые слова: ultradiscrete sine-Gordon equation; symmetrized max-plus algebra; noncommutative discrete sine-Gordon equation; noncommutative ultradiscrete sine-Gordon equation.

MSC: 37K10; 39A12

Поступила: 8 января 2013 г.; в окончательном варианте 31 октября 2013 г.; опубликована 12 ноября 2013 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2013.068



Реферативные базы данных:
ArXiv: 1311.2675


© МИАН, 2024