RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2014, том 10, 005, 21 стр. (Mi sigma870)

Эта публикация цитируется в 6 статьях

Why Do the Relativistic Masses and Momenta of Faster-than-Light Particles Decrease as their Speeds Increase?

Judit X. Madarásza, Mike Stannettb, Gergely Székelya

a Alfréd Rényi Institute of Mathematics, Hungary Academy of Sciences, P.O. Box 127, Budapest 1364, Hungary
b University of Sheffield, Department of Computer Science, 211 Portobello, Sheffield S1 4DP, United Kingdom

Аннотация: It has recently been shown within a formal axiomatic framework using a definition of four-momentum based on the Stückelberg–Feynman–Sudarshan–Recami “switching principle” that Einstein's relativistic dynamics is logically consistent with the existence of interacting faster-than-light inertial particles. Our results here show, using only basic natural assumptions on dynamics, that this definition is the only possible way to get a consistent theory of such particles moving within the geometry of Minkowskian spacetime. We present a strictly formal proof from a streamlined axiom system that given any slow or fast inertial particle, all inertial observers agree on the value of $\mathsf{m}\cdot \sqrt{|1-v^2|}$, where $\mathsf{m}$ is the particle's relativistic mass and $v$ its speed. This confirms formally the widely held belief that the relativistic mass and momentum of a positive-mass faster-than-light particle must decrease as its speed increases.

Ключевые слова: special relativity; dynamics; faster-than-light particles; superluminal motion; tachyons; axiomatic method; first-order logic.

MSC: 70A05; 03B30; 83A05

Поступила: 17 сентября 2013 г.; в окончательном варианте 7 января 2014 г.; опубликована 11 января 2014 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2014.005



Реферативные базы данных:
ArXiv: 1309.3713


© МИАН, 2024