RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2014, том 10, 014, 24 стр. (Mi sigma879)

Эта публикация цитируется в 5 статьях

Integrable Boundary for Quad-Graph Systems: Three-Dimensional Boundary Consistency

Vincent Caudreliera, Nicolas Crampéb, Qi Cheng Zhanga

a Department of Mathematical Science, City University London, Northampton Square, London EC1V 0HB, UK
b CNRS, Laboratoire Charles Coulomb, UMR 5221, Place Eugène Bataillon – CC070, F-34095 Montpellier, France

Аннотация: We propose the notion of integrable boundary in the context of discrete integrable systems on quad-graphs. The equation characterizing the boundary must satisfy a compatibility equation with the one characterizing the bulk that we called the three-dimensional (3D) boundary consistency. In comparison to the usual 3D consistency condition which is linked to a cube, our 3D boundary consistency condition lives on a half of a rhombic dodecahedron. The We provide a list of integrable boundaries associated to each quad-graph equation of the classification obtained by Adler, Bobenko and Suris. Then, the use of the term “integrable boundary” is justified by the facts that there are Bäcklund transformations and a zero curvature representation for systems with boundary satisfying our condition. We discuss the three-leg form of boundary equations, obtain associated discrete Toda-type models with boundary and recover previous results as particular cases. Finally, the connection between the 3D boundary consistency and the set-theoretical reflection equation is established.

Ключевые слова: discrete integrable systems; quad-graph equations; 3D-consistency; Bäcklund transformations; zero curvature representation; Toda-type systems; set-theoretical reflection equation.

MSC: 05C10; 37K10; 39A12; 57M15

Поступила: 19 июля 2013 г.; в окончательном варианте 5 февраля 2014 г.; опубликована 12 февраля 2014 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2014.014



Реферативные базы данных:
ArXiv: 1307.4023


© МИАН, 2024