RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2006, том 2, 060, 32 стр. (Mi sigma88)

Эта публикация цитируется в 44 статьях

$q$-Deformed KP Hierarchy and $q$-Deformed Constrained KP Hierarchy

Jingsong Heab, Yinghua Lib, Yi Chengb

a Centre for Scientific Computing, University of Warwick, Coventry CV4 7AL, United Kingdom
b Department of Mathematics, University of Science and Technology of China, Hefei, 230026 Anhui, P.R. China

Аннотация: Using the determinant representation of gauge transformation operator, we have shown that the general form of $\tau$ function of the $q$-KP hierarchy is a $q$-deformed generalized Wronskian, which includes the $q$-deformed Wronskian as a special case. On the basis of these, we study the $q$-deformed constrained KP ($q$-cKP) hierarchy, i.e. $l$-constraints of $q$-KP hierarchy. Similar to the ordinary constrained KP (cKP) hierarchy, a large class of solutions of $q$-cKP hierarchy can be represented by $q$-deformed Wronskian determinant of functions satisfying a set of linear $q$-partial differential equations with constant coefficients. We obtained additional conditions for these functions imposed by the constraints. In particular, the effects of $q$-deformation ($q$-effects) in single $q$-soliton from the simplest $\tau$ function of the $q$-KP hierarchy and in multi-$q$-soliton from one-component $q$-cKP hierarchy, and their dependence of $x$ and $q$, were also presented. Finally, we observe that $q$-soliton tends to the usual soliton of the KP equation when $x\to0$ and $q\to1$, simultaneously.

Ключевые слова: $q$-deformation; $\tau$ function; Gauge transformation operator; $q$-KP hierarchy; $q$-cKP hierarchy.

MSC: 37K10; 35Q51; 35Q53; 35Q55

Поступила: 27 января 2006 г.; в окончательном варианте 28 апреля 2006 г.; опубликована 13 июня 2006 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2006.060



Реферативные базы данных:
ArXiv: nlin.SI/0606039


© МИАН, 2024