Эта публикация цитируется в
7 статьях
On the Smoothness of the Noncommutative Pillow and Quantum Teardrops
Tomasz Brzeziński Department of Mathematics, Swansea University, Singleton Park, Swansea SA2 8PP, UK
Аннотация:
Recent results by Krähmer [
Israel J. Math. 189 (2012), 237–266] on smoothness of Hopf–Galois extensions and by Liu [
arxiv:1304.7117] on smoothness of generalized Weyl algebras are used to prove that the coordinate algebras of the noncommutative pillow orbifold [
Internat. J. Math. 2 (1991), 139–166], quantum teardrops
${\mathcal O}({\mathbb W}{\mathbb P}_q(1,l))$ [
Comm. Math. Phys. 316 (2012), 151–170], quantum lens spaces
${\mathcal O}(L_q(l;1,l))$ [
Pacific J. Math. 211 (2003), 249–263], the quantum Seifert manifold
${\mathcal O}(\Sigma_q^3)$ [
J. Geom. Phys. 62 (2012), 1097–1107], quantum real weighted projective planes
${\mathcal O}({\mathbb R}{\mathbb P}_q^2(l;\pm))$ [
PoS Proc. Sci. (2012), PoS(CORFU2011), 055, 10 pages] and quantum Seifert lens spaces
${\mathcal O}(\Sigma_q^3(l;-))$ [
Axioms 1 (2012), 201–225] are homologically smooth in the sense that as their own bimodules they admit finitely generated projective resolutions of finite length.
Ключевые слова:
smooth algebra; generalized Weyl algebra; strongly graded algebra; noncommutative pillow; quantum
teardrop; quantum lens space; quantum real weighted projective plane.
MSC: 58B32;
58B34 Поступила: 3 декабря 2013 г.; в окончательном варианте
9 февраля 2014 г.; опубликована
14 февраля 2014 г.
Язык публикации: английский
DOI:
10.3842/SIGMA.2014.015