RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2014, том 10, 026, 29 стр. (Mi sigma891)

Эта публикация цитируется в 4 статьях

Symmetry Groups of $A_n$ Hypergeometric Series

Yasushi Kajihara

Department of Mathematics, Kobe University, Rokko-dai, Kobe 657-8501, Japan

Аннотация: Structures of symmetries of transformations for Holman–Biedenharn–Louck $A_n$ hypergeometric series: $A_n$ terminating balanced ${}_4 F_3$ series and $A_n$ elliptic ${}_{10} E_9$ series are discussed. Namely the description of the invariance groups and the classification all of possible transformations for each types of $A_n$ hypergeometric series are given. Among them, a “periodic” affine Coxeter group which seems to be new in the literature arises as an invariance group for a class of $A_n$ ${}_4 F_3$ series.

Ключевые слова: multivariate hypergeometric series; elliptic hypergeometric series; Coxeter groups.

MSC: 33C67; 20F55; 33C20; 33D67

Поступила: 30 сентября 2013 г.; в окончательном варианте 4 марта 2014 г.; опубликована 18 марта 2014 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2014.026



Реферативные базы данных:
ArXiv: 1310.7273


© МИАН, 2024