RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2014, том 10, 032, 16 стр. (Mi sigma897)

Эта публикация цитируется в 10 статьях

Modules with Demazure Flags and Character Formulae

Vyjayanthi Chari, Lisa Schneider, Peri Shereen, Jeffrey Wand

Department of Mathematics, University of California, Riverside, CA 92521, USA

Аннотация: In this paper we study a family of finite-dimensional graded representations of the current algebra of $\mathfrak{sl}_2$ which are indexed by partitions. We show that these representations admit a flag where the successive quotients are Demazure modules which occur in a level $\ell$-integrable module for $A_1^1$ as long as $\ell$ is large. We associate to each partition and to each $\ell$ an edge-labeled directed graph which allows us to describe in a combinatorial way the graded multiplicity of a given level $\ell$-Demazure module in the filtration. In the special case of the partition $1^s$ and $\ell=2$, we give a closed formula for the graded multiplicity of level two Demazure modules in a level one Demazure module. As an application, we use our result along with the results of Naoi and Lenart et al., to give the character of a $\mathfrak{g}$-stable level one Demazure module associated to $B_n^1$ as an explicit combination of suitably specialized Macdonald polynomials. In the case of $\mathfrak{sl}_2$, we also study the filtration of the level two Demazure module by level three Demazure modules and compute the numerical filtration multiplicities and show that the graded multiplicites are related to (variants of) partial theta series.

Ключевые слова: Demazure flags; Demazure modules; theta series.

MSC: 06B15 ; 05E10; 14H42

Поступила: 22 октября 2013 г.; в окончательном варианте 17 марта 2014 г.; опубликована 27 марта 2014 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2014.032



Реферативные базы данных:
ArXiv: 1310.5191


© МИАН, 2024