RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2014, том 10, 035, 18 стр. (Mi sigma900)

Эта публикация цитируется в 4 статьях

Selfdual 4-Manifolds, Projective Surfaces, and the Dunajski–West Construction

D. M. J. Calderbank

Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK

Аннотация: I present a construction of real or complex selfdual conformal $4$-manifolds (of signature $(2,2)$ in the real case) from a natural gauge field equation on a real or complex projective surface, the gauge group being the group of diffeomorphisms of a real or complex $2$-manifold. The $4$-manifolds obtained are characterized by the existence of a foliation by selfdual null surfaces of a special kind. The classification by Dunajski and West of selfdual conformal $4$-manifolds with a null conformal vector field is the special case in which the gauge group reduces to the group of diffeomorphisms commuting with a vector field, and I analyse the presence of compatible scalar-flat Kähler, hypercomplex and hyperkähler structures from a gauge-theoretic point of view. In an appendix, I discuss the twistor theory of projective surfaces, which is used in the body of the paper, but is also of independent interest.

Ключевые слова: selfduality; twistor theory; integrable systems; projective geometry.

MSC: 53A30; 32L25; 37K25; 37K65; 53C25; 70S15; 83C20; 83C60

Поступила: 21 января 2014 г.; в окончательном варианте 18 марта 2014 г.; опубликована 28 марта 2014 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2014.035



Реферативные базы данных:
ArXiv: math.DG/0606754


© МИАН, 2024