Эта публикация цитируется в
5 статьях
A Notable Relation between $N$-Qubit and $2^{N-1}$-Qubit Pauli Groups via Binary $\mathrm{LGr}(N,2N)$
Frédéric Holwecka,
Metod Sanigab,
Péter Lévayc a Laboratoire IRTES/M3M, Université de technologie de Belfort-Montbéliard, F-90010 Belfort, France
b Astronomical Institute, Slovak Academy of Sciences,
SK-05960 Tatranská Lomnica, Slovak Republic
c Department of Theoretical Physics, Institute of Physics, Budapest University of Technology and Economics, Budafoki út. 8, H-1521, Budapest, Hungary
Аннотация:
Employing the fact that the geometry of the
$N$-qubit (
$N \geq 2$) Pauli group is embodied in the structure of the symplectic polar space
$\mathcal{W}(2N-1,2)$ and using properties of the Lagrangian Grassmannian
$\mathrm{LGr}(N,2N)$ defined over the smallest Galois field, it is demonstrated that there exists a bijection between the set of maximum sets of mutually commuting elements of the
$N$-qubit Pauli group and a certain subset of elements of the
$2^{N-1}$-qubit Pauli group. In order to reveal finer traits of this correspondence, the cases
$N=3$ (also addressed recently by Lévay, Planat and Saniga [
J. High Energy Phys. 2013 (2013), no. 9, 037, 35 pages]) and
$N=4$ are discussed in detail. As an apt application of our findings, we use the stratification of the ambient projective space
$\mathrm{PG}(2^N-1,2)$ of the
$2^{N-1}$-qubit Pauli group in terms of
$G$-orbits, where $G \equiv \mathrm{SL}(2,2)\times \mathrm{SL}(2,2)\times\cdots\times \mathrm{SL}(2,2)\rtimes S_N$, to decompose
$\underline{\pi}(\mathrm{LGr}(N,2N))$ into non-equivalent orbits. This leads to a partition of
$\mathrm{LGr}(N,2N)$ into distinguished classes that can be labeled by elements of the above-mentioned Pauli groups.
Ключевые слова:
multi-qubit Pauli groups; symplectic polar spaces $\mathcal{W}(2N-1,2)$; Lagrangian Grassmannians $\mathrm{LGr}(N,2N)$ over the smallest Galois field.
MSC: 05B25;
51E20;
81P99 Поступила: 14 ноября 2013 г.; в окончательном варианте
2 апреля 2014 г.; опубликована
8 апреля 2014 г.
Язык публикации: английский
DOI:
10.3842/SIGMA.2014.041