RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2014, том 10, 049, 12 стр. (Mi sigma914)

Эта публикация цитируется в 1 статье

The Classification of All Crossed Products $H_4 \# k[C_{n}]$

Ana-Loredana Agoreab, Costel-Gabriel Bonteaac, Gigel Militaruc

a Faculty of Engineering, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
b Department of Applied Mathematics, Bucharest University of Economic Studies, Piata Romana 6, RO-010374 Bucharest 1, Romania
c Faculty of Mathematics and Computer Science, University of Bucharest, Str. Academiei 14, RO-010014 Bucharest 1, Romania

Аннотация: Using the computational approach introduced in [Agore A.L., Bontea C.G., Militaru G., J. Algebra Appl. 12 (2013), 1250227, 24 pages] we classify all coalgebra split extensions of $H_4$ by $k[C_n]$, where $C_n$ is the cyclic group of order $n$ and $H_4$ is Sweedler's $4$-dimensional Hopf algebra. Equivalently, we classify all crossed products of Hopf algebras $H_4 \# k[C_{n}]$ by explicitly computing two classifying objects: the cohomological ‘group’ ${\mathcal H}^{2} ( k[C_{n}], H_4)$ and $\mathrm{Crp} ( k[C_{n}], H_4):=$ the set of types of isomorphisms of all crossed products $H_4 \# k[C_{n}]$. More precisely, all crossed products $H_4 \# k[C_n]$ are described by generators and relations and classified: they are $4n$-dimensional quantum groups $H_{4n, \lambda, t}$, parameterized by the set of all pairs $(\lambda, t)$ consisting of an arbitrary unitary map $t : C_n \to C_2$ and an $n$-th root $\lambda$ of $\pm 1$. As an application, the group of Hopf algebra automorphisms of $H_{4n, \lambda, t}$ is explicitly described.

Ключевые слова: crossed product of Hopf algebras; split extension of Hopf algebras.

MSC: 16T10; 16T05; 16S40

Поступила: 18 ноября 2013 г.; в окончательном варианте 18 апреля 2014 г.; опубликована 23 апреля 2014 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2014.049



Реферативные базы данных:
ArXiv: 1210.7700


© МИАН, 2025