RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2006, том 2, 065, 15 стр. (Mi sigma93)

Эта публикация цитируется в 5 статьях

On the Linearization of Second-Order Differential and Difference Equations

Vladimir Dorodnitsyn

Keldysh Institute of Applied Mathematics of Russian Academy of Science, 4 Miusskaya Sq., Moscow, 125047 Russia

Аннотация: This article complements recent results of the papers [J. Math. Phys. 41 (2000), 480; 45 (2004), 336] on the symmetry classification of second-order ordinary difference equations and meshes, as well as the Lagrangian formalism and Noether-type integration technique. It turned out that there exist nonlinear superposition principles for solutions of special second-order ordinary difference equations which possess Lie group symmetries. This superposition springs from the linearization of second-order ordinary difference equations by means of non-point transformations which act simultaneously on equations and meshes. These transformations become some sort of contact transformations in the continuous limit.

Ключевые слова: non-point transformations; second-order ordinary differential and difference equations; linearization; superposition principle.

MSC: 34C14; 34C20; 39A05; 65L12; 70H33

Поступила: 28 ноября 2005 г.; в окончательном варианте 13 июля 2006 г.; опубликована 16 августа 2006 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2006.065



Реферативные базы данных:
ArXiv: nlin.SI/0608038


© МИАН, 2024