RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2014, том 10, 077, 25 стр. (Mi sigma942)

Эта публикация цитируется в 10 статьях

Quantitative $K$-Theory Related to Spin Chern Numbers

Terry A. Loring

Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM 87131, USA

Аннотация: We examine the various indices defined on pairs of almost commuting unitary matrices that can detect pairs that are far from commuting pairs. We do this in two symmetry classes, that of general unitary matrices and that of self-dual matrices, with an emphasis on quantitative results. We determine which values of the norm of the commutator guarantee that the indices are defined, where they are equal, and what quantitative results on the distance to a pair with a different index are possible. We validate a method of computing spin Chern numbers that was developed with Hastings and only conjectured to be correct. Specifically, the Pfaffian–Bott index can be computed by the “log method” for commutator norms up to a specific constant.

Ключевые слова: $K$-theory; $C^{*}$-algebras; matrices.

MSC: 19M05; 46L60; 46L80

Поступила: 15 января 2014 г.; в окончательном варианте 13 июля 2014 г.; опубликована 19 июля 2014 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2014.077



Реферативные базы данных:
ArXiv: 1302.0349


© МИАН, 2024