RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2014, том 10, 080, 48 стр. (Mi sigma945)

Эта публикация цитируется в 11 статьях

The Variety of Integrable Killing Tensors on the 3-Sphere

Konrad Schöbel

Institut für Mathematik, Fakultät für Mathematik und Informatik, Friedrich-Schiller-Universität Jena, 07737 Jena, Germany

Аннотация: Integrable Killing tensors are used to classify orthogonal coordinates in which the classical Hamilton–Jacobi equation can be solved by a separation of variables. We completely solve the Nijenhuis integrability conditions for Killing tensors on the sphere $S^3$ and give a set of isometry invariants for the integrability of a Killing tensor. We describe explicitly the space of solutions as well as its quotient under isometries as projective varieties and interpret their algebro-geometric properties in terms of Killing tensors. Furthermore, we identify all Stäckel systems in these varieties. This allows us to recover the known list of separation coordinates on $S^3$ in a simple and purely algebraic way. In particular, we prove that their moduli space is homeomorphic to the associahedron $K_4$.

Ключевые слова: separation of variables; Killing tensors; Stäckel systems; integrability; algebraic curvature tensors.

MSC: 53A60; 14H10; 14M12

Поступила: 14 ноября 2013 г.; в окончательном варианте 15 июля 2014 г.; опубликована 29 июля 2014 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2014.080



Реферативные базы данных:
ArXiv: 1205.6227


© МИАН, 2024