RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2014, том 10, 093, 16 стр. (Mi sigma958)

Generalized Coefficients for Hopf Cyclic Cohomology

Mohammad Hassanzadeh, Dan Kucerovsky, Bahram Rangipour

University of New Brunswick, Fredericton, Canada

Аннотация: A category of coefficients for Hopf cyclic cohomology is defined. It is shown that this category has two proper subcategories of which the smallest one is the known category of stable anti Yetter–Drinfeld modules. The middle subcategory is comprised of those coefficients which satisfy a generalized SAYD condition depending on both the Hopf algebra and the (co)algebra in question. Some examples are introduced to show that these three categories are different. It is shown that all components of Hopf cyclic cohomology work well with the new coefficients we have defined.

Ключевые слова: cyclic cohomology; Hopf algebras; noncommutative geometry.

MSC: 19D55; 16T05; 11M55

Поступила: 19 августа 2013 г.; в окончательном варианте 22 августа 2014 г.; опубликована 1 сентября 2014 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2014.093



Реферативные базы данных:
ArXiv: 1408.5540


© МИАН, 2024