RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2014, том 10, 095, 10 стр. (Mi sigma960)

Эта публикация цитируется в 15 статьях

Algebraic Geometry of Matrix Product States

Andrew Critcha, Jason Mortonb

a Jane Street Capital, 1 New York Plaza New York, NY 10004, USA
b Department of Mathematics, Pennsylvania State University, University Park, PA 16802, USA

Аннотация: We quantify the representational power of matrix product states (MPS) for entangled qubit systems by giving polynomial expressions in a pure quantum state's amplitudes which hold if and only if the state is a translation invariant matrix product state or a limit of such states. For systems with few qubits, we give these equations explicitly, considering both periodic and open boundary conditions. Using the classical theory of trace varieties and trace algebras, we explain the relationship between MPS and hidden Markov models and exploit this relationship to derive useful parameterizations of MPS. We make four conjectures on the identifiability of MPS parameters.

Ключевые слова: matrix product states; trace varieties; trace algebras; quantum tomography.

MSC: 14J81; 81Q80; 14Q15

Поступила: 28 февраля 2014 г.; в окончательном варианте 22 августа 2014 г.; опубликована 10 сентября 2014 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2014.095



Реферативные базы данных:
ArXiv: 1210.2812


© МИАН, 2024