RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2014, том 10, 101, 11 стр. (Mi sigma966)

Эта публикация цитируется в 3 статьях

Who's Afraid of the Hill Boundary?

Richard Montgomery

Math Dept. UC Santa Cruz, Santa Cruz, CA 95064, USA

Аннотация: The Jacobi–Maupertuis metric allows one to reformulate Newton's equations as geodesic equations for a Riemannian metric which degenerates at the Hill boundary. We prove that a JM geodesic which comes sufficiently close to a regular point of the boundary contains pairs of conjugate points close to the boundary. We prove the conjugate locus of any point near enough to the boundary is a hypersurface tangent to the boundary. Our method of proof is to reduce analysis of geodesics near the boundary to that of solutions to Newton's equations in the simplest model case: a constant force. This model case is equivalent to the beginning physics problem of throwing balls upward from a fixed point at fixed speeds and describing the resulting arcs, see Fig. 2.

Ключевые слова: Jacobi–Maupertuis metric; conjugate points.

MSC: 37J50; 58E10; 70H99; 37J45; 53B50

Поступила: 25 августа 2014 г.; в окончательном варианте 28 октября 2014 г.; опубликована 2 ноября 2014 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2014.101



Реферативные базы данных:
ArXiv: 1407.7163


© МИАН, 2024