RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирский журнал индустриальной математики // Архив

Сиб. журн. индустр. матем., 2018, том 21, номер 3, страницы 94–103 (Mi sjim1014)

Эта публикация цитируется в 1 статье

Свободное кавитационное торможение кругового цилиндра в жидкости после удара

М. В. Норкин

Южный федеральный университет, Институт математики, механики и компьютерных наук, ул. Мильчакова, 8а, 344090 г. Ростов-на-Дону

Аннотация: Рассматривается задача о вертикальном безотрывном ударе и последующем свободном торможении кругового цилиндра, полупогруженного в жидкость. Особенностью этой задачи является то, что при определенных условиях возникают области низкого давления вблизи тела и образуются присоединенные каверны. Зоны отрыва и закон движения цилиндра заранее не известны и подлежат определению в ходе решения задачи. Исследование задачи проводится при помощи прямого асимптотического метода, эффективного на малых временах. Формулируется нелинейная задача с односторонними ограничениями, которая решается совместно с уравнением, определяющим закон движения цилиндра. В случае, когда пространство над внешней свободной поверхностью жидкости заполнено газом низкого давления (вакуум), строится аналитическое решение задачи. Для определения основных гидродинамических характеристик (точки отрыва и ускорения цилиндра) получена система трансцендентных уравнений, содержащих элементарные функции. Решение этой системы хорошо согласуется с результатами, найденными с помощью прямого численного метода.

Ключевые слова: идеальная несжимаемая жидкость, круговой цилиндр, удар, свободное кавитационное торможение, свободная граница, каверна, малые времена, число Фруда.

УДК: 519.634

Статья поступила: 15.01.2018

DOI: 10.17377/sibjim.2018.21.309


 Англоязычная версия: Journal of Applied and Industrial Mathematics, 2018, 12:3, 510–518

Реферативные базы данных:


© МИАН, 2024