Аннотация:
Проведено теоретическое исследование некорректной задачи локализации (определения положения) разрывов первого рода функции одного переменного. Предполагается, что точная функция $x$ гладкая за исключением конечного числа точек, в которых функция испытывает разрыв первого рода. Требуется по приближенно заданной функции $x^{\delta}$, $\|x^{\delta}-x\|_{L_2(\Bbb {R})}\le\delta$, и уровню возмущения $\delta$ определить количество разрывов и аппроксимировать их положение с оценкой точности аппроксимации. Регулярные методы локализации строятся на основе усреднений, масштабируемых с помощью параметра регуляризации. Исследование методов заключается в проведении оценок на классах корректности их трех главных характеристик: точности локализации, разделимости и наблюдаемости. Рассмотрена общая постановка задачи, обобщающая ранее полученные результаты. Получены необходимые условия, которым должны удовлетворять точность локализации, разделимость и наблюдаемость. Также получены достаточные условия, близкие к необходимым, при выполнении которых построен метод локализации с заданными точностью, наблюдаемостью и разделимостью. Введено понятие оптимальности методов локализации по порядку для точности, разделимости и наблюдаемости (в целом) и построены методы, оптимальные по порядку в целом.
Ключевые слова:некорректная задача, регуляризующий алгоритм, разрыв первого рода, порог разделимости, порог наблюдаемости, класс корректности, оптимальность.
УДК:517.988.68
Статья поступила: 02.07.2018 Окончательный вариант: 10.12.2018