Аннотация:
Приводится определение шарнирного механизма, учитывающее его кинематическую природу. Это определение существенно отличается от принятого рядом математиков в недавних работах. Если использовать не учитывающее кинематической подоплёки принятое ныне определение, то классический результат Кемпе о возможности черчения по частям произвольной плоской алгебраической кривой шарнирами подходящим образом выбранных плоских шарнирных механизмов нельзя считать достаточно обоснованным самим Кемпе. Что и было отмечено в современной литературе и даже привело к обвинениям Кемпе в ошибке. Предложенное развитие и современное обоснование результата Кемпе по существу представляет собой модификацию метода Кемпе построения нужного механизма из механизмов-кирпичиков, выполняющих алгебраические действия. Однако оно основано на использовании сложного языка алгебраической геометрии, что приводит к замене коротких и прозрачных рассуждений Кемпе на порядок более длинными и трудновоспринимаемыми текстами. При нашем определении шарнирного механизма можно дать строгую формулировку теоремы Кемпе, для доказательства которой достаточно аргументов Кемпе с минимальными уточнениями. Эти уточнения приведены в работе. Обсуждается современное развитие результата Кемпе и претензии к рассуждениям Кемпе. Также приведены общие мысли о математике, возникшие у автора в связи с теоремой Кемпе и её современным развитием.