RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирский журнал индустриальной математики // Архив

Сиб. журн. индустр. матем., 2023, том 26, номер 2, страницы 94–112 (Mi sjim1234)

Стохастическое моделирование локальных по времени и местоположению контактов индивидуумов в эпидемическом процессе

Н. В. Перцев, В. А. Топчий, К. К. Логинов

Институт математики им. С.Л. Соболева СО РАН, просп. Акад. Коптюга, 4, г. Новосибирск 630090, Россия

Аннотация: Представлена непрерывно-дискретная стохастическая модель, описывающая динамику численности восприимчивых и заразных индивидуумов, посещающих некоторый объект. Индивидуумы поступают на объект как по отдельности, так и в составе групп индивидуумов, объединённых по некоторым признакам. Длительности пребывания индивидуумов на территории объекта задаются с помощью распределений, отличных от экспоненциального. Индивидуумы, поступившие на объект в составе некоторой группы, покидают объект в составе этой же группы. Заразные индивидуумы распространяют вирусные частицы, содержащиеся в выделяемой ими воздушно-капельной смеси. Некоторое количество воздушно-капельной смеси, содержащей вирусные частицы, оседает на поверхности различных предметов в общедоступных для индивидуумов местах объекта. Площадь заражённой поверхности (поверхности, содержащей осевшую воздушно-капельную смесь с вирусными частицами) описывается с помощью линейного дифференциального уравнения со скачкообразно меняющейся правой частью и разрывными начальными данными. Контакты восприимчивых индивидуумов с заразными индивидуумами и с заражённой поверхностью могут приводить к их инфицированию. Приведена теоретико-вероятностная формализация модели и описан алгоритм численного моделирования динамики компонент построенного случайного процесса с помощью метода Монте-Карло. Представлены результаты численного исследования математических ожиданий случайных величин, описывающих число контактов восприимчивых индивидуумов с заразными индивидуумами и с заражённой поверхностью в расчёте на одного восприимчивого индивидуума за фиксированный промежуток времени.

Ключевые слова: случайный процесс, дифференциальное уравнение с разрывной правой частью, метод Монте-Карло, вычислительный эксперимент, эпидемиология.

УДК: 519.24:51--76

Статья поступила: 21.11.2022
Окончательный вариант: 21.11.2022

DOI: 10.33048/SIBJIM.2023.26.209


 Англоязычная версия: Journal of Applied and Industrial Mathematics, 2023, 17:2, 355–369


© МИАН, 2024