RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирский журнал индустриальной математики // Архив

Сиб. журн. индустр. матем., 2002, том 5, номер 1, страницы 85–104 (Mi sjim153)

Эта публикация цитируется в 5 статьях

Распознавание квазипериодической последовательности, образованной из заданного числа усеченных подпоследовательностей

А. В. Кельманов, С. А. Хамидуллин

Институт математики им. С. Л. Соболева СО РАН

Аннотация: Изложено решение задачи распознавания числовых квазипериодических последовательностей, образованных из заданного числа усеченных подпоследовательностей.Предполагается, что: каждая неусеченная подпоследовательность, входящая в квазипериодическую последовательность, является элементомнекоторого заданного алфавита эталонных последовательностей; у каждой подпоследовательности, входящей в исходную ненаблюдаемую квазипериодическую последовательность, утеряны (усечены) первые (начало) и/или последние (окончание) члены; все неусеченные подпоследовательности в составе исходной квазипериодической последовательности идентичны; номера первых членов (моменты времени начала) неусеченных подпоследовательностей, а также номера членов, соответствующие границам усечения, – детерминированные (не случайные), но неизвестные величины; ненаблюдаемая квазипериодическая последовательность, включающая усеченные подпоследовательности, искажена аддитивной гауссовской некоррелированной помехой с известной дисперсией; число подпоследовательностей в квазипериодической последовательности известно. Установлено, что данная задача является специфической задачей проверки гипотез о среднем случайного гауссовского вектора. Обоснован полиномиальный апостериорный вычислительный алгоритм решения задачи. Получены рекуррентные формулы пошаговой дискретной оптимизации, обеспечивающие принятие решения по критериям Байеса и максимального правдоподобия. Даны оценки временной и емкостной сложности алгоритма, связанные с параметрами задачи. Приведены результаты численного моделирования.

УДК: 519.2:621.391

Статья поступила: 30.01.2001



Реферативные базы данных:


© МИАН, 2024