RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирский журнал индустриальной математики // Архив

Сиб. журн. индустр. матем., 2005, том 8, номер 3, страницы 69–86 (Mi sjim291)

Эта публикация цитируется в 2 статьях

Распознавание числовой последовательности, включающей серии квазипериодически повторяющихся эталонных фрагментов. Случай известного числа фрагментов

А. В. Кельманов, Л. В. Михайлова

Институт математики им. С. Л. Соболева СО РАН

Аннотация: Рассматривается апостериорный (off-line) подход к решению задачи распознавания числовой последовательности, в составе которой имеются серии квазипериодически повторяющихся эталонных фрагментов (подпоследовательностей). Изложено решение задачи для случая, когда число фрагментов в последовательности известно. Предполагается, что: 1) каждой распознаваемой последовательности соответствует единственный порождающий эталонный набор – упорядоченная совокупность элементов из алфавита эталонных последовательностей, имеющих одинаковую длину (число членов); 2) элементы эталонного набора в качестве повторяющихся фрагментов входят в состав порожденной последовательности так, что каждому элементу набора соответствует собственная серия, причем серии упорядочены так же, как элементы этого набора; 3) задана совокупность (словарь) упорядоченных эталонных наборов, порождающих последовательности, подлежащие распознаванию; 4) число повторов в серии и номер члена последовательности, соответствующий началу фрагмента, – детерминированные (не случайные), но неизвестные величины; 5) для наблюдения доступна последовательность, искаженная аддитивной гауссовской некоррелированной помехой. Установлено, что сущность рассматриваемой задачи состоит в проверке совокупности гипотез о среднем случайного гауссовского вектора; мощность этой совокупности экспоненциально растет при увеличении размерности вектора, т. е. длины последовательности. Обоснован эффективный алгоритм апостериорного типа, который обеспечивает принятие решения по критерию максимального правдоподобия; оценки временной и емкостной сложностей связаны с параметрами задачи. Приведены результаты численного моделирования.

УДК: 519.2:621.391

Статья поступила: 21.10.2004



Реферативные базы данных:


© МИАН, 2024