Аннотация:
Предложены два дискретных дифференциальных синус- и косинус-преобразований Фурье комплексного вектора, основанных на разностном решении неоднородных гармонических дифференциальных уравнений соответственно первого порядка с комплексными коэффициентами и второго порядка с действительными коэффициентами. В базовом варианте дифференциальные методы Фурье требуют в несколько раз меньше арифметических операций по сравнению с базовым классическим методом дискретного преобразования Фурье. В дифференциальном синус-преобразовании Фурье матрица преобразования – комплексная с перемежаемыми вещественными и мнимыми элементами, в косинус-преобразовании – матрица чисто вещественная. Как и в классическом случае, обе матрицы преобразуются в матрицы циклической свертки, и к ним могут применяться все алгоритмы быстрой свертки, включая алгоритмы Рейдера и Винограда.
Дифференциальные методы Фурье совместимы с алгоритмом Гуда–Томаса быстрого преобразования Фурье и в сочетании с алгоритмами быстрых сверток могут превзойти все известные методы ускорения быстрого преобразования Фурье.