Аннотация:
В данной статье рассматривается решение трехмерных неоднородных задач Гельмгольца, дискретизированных компактными конечно-разностными методами четвертого порядка в применении к акустической инверсии волновых форм в геофизике. В такой постановке для численного моделирования явлений распространения волн необходимо приближенное решение, возможно, очень больших линейных систем уравнений. Мы предлагаем итерационный двухсеточный метод, в котором задача на грубой сетке решается неточно. Единичный цикл этого метода используется в качестве переменного предобуславливателя для гибкого метода подпространств Крылова. Численные результаты показывают, что алгоритм может использоваться в реальном трехмерном приложении. Предлагаемый численный метод позволяет решать задачи распространения волн с одним или несколькими источниками даже при высоких частотах на кластере с распределенной памятью при наличии достаточного числа ядер.