Сиб. журн. вычисл. матем.,
2013, том 16, номер 2,страницы 133–145(Mi sjvm505)
Перевод системы в состояние динамического равновесия и в $\epsilon$-окрестность конечного состояния при оптимальном управлении системой с неизвестным возмущением
Аннотация:
Рассмотрена задача перевода линейной системы в состояние динамического равновесия при одновременном действии неизвестного возмущения и оптимального по быстродействию управления. Оптимальное управление вычисляется в процессе движения по фазовой траектории и периодически обновляется для дискретных значений фазовых координат. Доказано, что фазовая траектория приходит в точку динамического равновесия и совершает незатухающие периодические движения (устойчивый предельный цикл). Исследуется влияние различных параметров на положение точки динамического равновесия и на форму предельного цикла. Показано, что вычисление и учет возмущения в алгоритме управления увеличивает точность перевода в заданное конечное состояние. Дан метод оценки достижимой точности. Приведены результаты моделирования и численных расчетов.