Аннотация:
Функциональные алгоритмы статистического моделирования предназначены для построения аппроксимации решения задачи как функции на требуемой области. Для функциональных алгоритмов с различными типами стохастических оценок в узлах были разработаны подходы к построению верхних границ погрешностей в метрике пространства $\mathbf C$, учитывающие степень зависимости оценок. Кроме того, существует универсальный подход, применимый при любой степени зависимости стохастических оценок. Построенная верхняя граница погрешности функционального алгоритма используется при выборе условно-оптимальных значений параметров, таких как число узлов сетки и объем выборки. Оптимальность выбираемых параметров напрямую зависит от точности используемой верхней границы погрешности. Основной целью работы является сравнение универсального подхода и подходов, учитывающих степень зависимости оценок.