RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирский журнал вычислительной математики // Архив

Сиб. журн. вычисл. матем., 2016, том 19, номер 4, страницы 357–369 (Mi sjvm623)

Эта публикация цитируется в 3 статьях

Об итерационных методах решения уравнений с накрывающими отображениями

Т. В. Жуковскаяa, Е. С. Жуковскийbc

a Тамбовский государственный технический университет, ул. Советская, 106, Тамбов, 392000
b Тамбовский государственный университет имени Г. Р. Державина, ул. Интернациональная, 33, Тамбов, 392000
c Российский университет дружбы народов, ул. Миклухо-Маклая, 6, Москва, 117198

Аннотация: Предлагается итерационный метод решения уравнения $\Upsilon(x,x)=y$, в котором отображение $\Upsilon$ действует в метрических пространствах, является накрывающим по первому аргументу и липшицевым по второму. Каждый следующий элемент $x_{i+1}$ последовательности итераций определяется через предыдущий как решение уравнения $\Upsilon(x,x_i)=y_i$, где $y_i$ может быть любым достаточно близким к $y$ элементом. Получены условия сходимости, даны оценки погрешности. Предлагаемый метод является развитием итерационного метода А. В. Арутюнова нахождения точек совпадения отображений. Для практической реализации метода в линейных нормированных пространствах для определения $x_{i+1}$ предлагается выполнить один шаг методом Ньютона–Канторовича. Полученный таким образом метод, в случае если имеет место представление $\Upsilon(x,u)=\psi(x)-\phi(u)$, совпадает с итерационным методом, предложенным в работах А. И. Зинченко, М. А. Красносельского, И. А. Кусакина.

Ключевые слова: итерационные методы решения уравнений, накрывающие отображения метрических пространств, приближенное решение.

УДК: 519.642.8

Статья поступила: 18.03.2015
Переработанный вариант: 18.02.2016

DOI: 10.15372/SJNM20160402


 Англоязычная версия: Numerical Analysis and Applications, 2016, 9:4, 277–287

Реферативные базы данных:


© МИАН, 2024