Аннотация:
Основная цель и стимул при построении двух- и трехточечных методов с памятью – достижение наилучшей вычислительной эффективности без дополнительного оценивания функций. В этой связи мы модифицировали существующие методы без памяти четвертого и восьмого порядков с оптимальным порядком сходимости с использованием различных аппроксимаций самоускоряющихся параметров. Эти параметры были вычислены с использованием эрмитового интерполяционного многочлена, ускоряющего порядок сходимости этих методов без памяти. В частности, порядок $R$-сходимости предлагаемых двух- и трехшаговых методов с памятью увеличивается с четвертого до пятого и с восьмого до десятого. Еще одним преимуществом этих методов является то, что условие $f'(x)\ne0$ в окрестности требуемого корня, налагаемое на метод Ньютона, может быть снято. Также приводится численное сравнение для подтверждения теоретических результатов.
Ключевые слова:итерационный метод, схема без памяти, схема с памятью, вычислительная эффективность, численный результат.