Аннотация:
В работе изучаются всевозможные разностные схемы для уравнения переноса на косых шаблонах, т.е. схемы, использующие различные пространственные сетки на разных временный слоях. Такого рода схемы могут быть полезны при решении краевых задач с подвижными границами, при использовании регулярных сеток нестандартной структуры, например треугольных или сотовых, а также при использовании адаптивных методов.
Для исследования устойчивости схем на косых шаблонах используются анализ первого дифференциального приближения и дисперсионный анализ. Анализируется смысл условий устойчивости с точки зрения ограничений на расположение элементов шаблона относительно характеристик уравнения, а также проводится сравнение результатов с геометрическими интерпретациями устойчивости классических схем. В работе представлены обобщения косых схем на случай квазилинейного уравнения переноса и приведены результаты численных экспериментов для них.