Аннотация:
Рассматривается класс условно-коррректных задач в гильбертовом пространстве, характеризуемый гельдеровой оценкой условной устойчивости на выпуклом замкнутом ограниченном множестве. Исследуются метод квазирешений В. К. Иванова и его конечномерный вариант, связанные с минимизацией многоэкстремального функционала невязки на множестве условной корректности или на его конечномерном сечении. Для этих экстремальных задач устанавливается, что каждая их стационарная точка, не слишком далекая от искомого решения исходной обратной задачи, лежит в малой окрестности решения. Даны оценки диаметра указанной окрестности в терминах погрешностей входных данных.
Ключевые слова:обратная задача, условно-корректная задача, метод квазирешений, глобальная оптимизация, конечномерное подпространство, оценка точности, эффект кластеризации.
УДК:517.988
Статья поступила: 25.08.2017 Переработанный вариант: 15.12.2017