RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирский журнал вычислительной математики // Архив

Сиб. журн. вычисл. матем., 2019, том 22, номер 2, страницы 167–185 (Mi sjvm708)

Эта публикация цитируется в 4 статьях

Двухсеточные методы для новой смешанной конечно-элементной аппроксимации полулинейных параболических интегро-дифференциальных уравнений

С. Лиуa, Т. Хоуb

a Institute of Computational Mathematics, Department of Mathematics and Computational Science, Hunan University of Science and Engineering, Yongzhou 425100, Hunan, China
b School of Mathematics and Statistics, Beihua University, Jilin 132013, Jilin, China

Аннотация: В данной статье представлена двухсеточная схема для полулинейного параболического интегродифференциального уравнения с использованием нового смешанного метода конечных элементов. Градиент в методе принадлежит пространству квадратично интегрируемых функций, а не классическому пространству $H(\mathrm{div};\Omega)$. Скорость и давление аппроксимируются парой $P_0^2-P_1$, которая удовлетворяет условию inf–sup. Вначале мы решаем исходную нелинейную задачу на грубой сетке нашей двухсеточной схемы. Затем для линеаризации дискретизованных уравнений мы дважды используем ньютоновскую итерацию на мелкой сетке. Показано, что алгоритм помогает достичь асимптотически оптимальной аппроксимации, когда размеры сеток удовлетворяют соотношению $h=\mathcal{O}(H^6|\ln H|^2)$. В результате решение такого большого класса нелинейных уравнений не намного сложнее, чем решение одного линеаризованного уравнения. Представлен численный эксперимент для подтверждения теоретических результатов двухсеточного метода.

Ключевые слова: полулинейные параболические интегро-дифференциальные уравнения, новый смешанный метод конечных элементов, априорная оценка ошибки, двухсеточный, пространство квадратично интегрируемых функций.

MSC: 49J20, 65N30

Статья поступила: 20.04.2018
Переработанный вариант: 13.07.2018

DOI: 10.15372/SJNM20190204


 Англоязычная версия: Numerical Analysis and Applications, 2019, 12:2, 137–154

Реферативные базы данных:


© МИАН, 2024