RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирский журнал вычислительной математики // Архив

Сиб. журн. вычисл. матем., 2020, том 23, номер 1, страницы 99–114 (Mi sjvm735)

Эта публикация цитируется в 2 статьях

Классификация разностных схем максимально возможной точности на расширенных симметричных шаблонах для уравнения Шредингера и уравнения теплопроводности

В. И. Паасоненab

a Институт вычислительных технологий Сибирского отделения Российской академии наук, просп. Акад. М.А. Лаврентьева, 6, Новосибирск, 630090
b Новосибирский национальный исследовательский государственный университет (НГУ), ул. Пирогова, 2, Новосибирск, 630090

Аннотация: Для уравнения Шредингера и уравнения теплопроводности рассматриваются всевозможные симметричные двухслойные разностные схемы на произвольных расширенных шаблонах. Коэффициенты схем определяются из условий, при которых достигается максимально возможный порядок аппроксимации по основной переменной. Из множества максимально точных схем выделяется класс абсолютно устойчивых схем. Для исследования устойчивости схем численно и аналитически проверяется выполнение критерия Неймана.
Показано, что свойство схем быть абсолютно устойчивыми или неустойчивыми существенно зависит от порядка точности по эволюционной переменной. В результате классификации построены абсолютно устойчивые схемы до десятого порядка точности по основной переменной.

Ключевые слова: симметричная разностная схема, компактная схема, симметричный шаблон, схема максимального порядка точности, многоточечная схема, многоточечный шаблон.

УДК: 519.6

Статья поступила: 10.08.2018
Переработанный вариант: 12.03.2019

DOI: 10.15372/SJNM20200107


 Англоязычная версия: Numerical Analysis and Applications, 2020, 13:1, 82–94

Реферативные базы данных:


© МИАН, 2024