RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирский журнал вычислительной математики // Архив

Сиб. журн. вычисл. матем., 2020, том 23, номер 4, страницы 415–429 (Mi sjvm757)

Разработка метода метаэвристического программирования для синтеза нелинейных моделей

О. Г. Монахов, Э. А. Монахова

Институт вычислительной математики и математической геофизики Сибирского отделения Российской академии наук, просп. Акад. Лаврентьева, 6, Новосибирск, 630090

Аннотация: Рассматривается решение проблемы построения нелинейных моделей (математических выражений, функций, алгоритмов, программ) на основе заданных экспериментальных данных, множества переменных, базовых функций и операций. Разработан метод метаэвристического программирования для синтеза нелинейных моделей, который использует представление хромосомы в виде вектора действительных чисел и позволяет применить различные биоинспирированные (природоподобные) алгоритмы оптимизации при поиске моделей. Получены оценки эффективности предложенного подхода с использованием десяти различных биоинспирированных алгоритмов (генетический алгоритм — две модификации, алгоритм дифференциальной эволюции, алгоритм оптимизации роем частиц, алгоритм колонии пчел, алгоритм оптимизации на основе преподавания и обучения и его две модификации, эволюционная стратегия с адаптацией матрицы ковариаций, алгоритм поиска на основе теплопередачи) и проведено его сравнение со стандартным алгоритмом генетического программирования, алгоритмом грамматической эволюции и алгоритмом декартового генетического программирования. Проведенные эксперименты показали существенное преимущество предложенного подхода по сравнению с указанными алгоритмами как по времени поиска решения (более чем на порядок в большинстве случаев), так и по вероятности нахождения заданной функции (модели) (во многих случаях более чем в два раза).

Ключевые слова: метод метаэвристического программирования, генетический алгоритм, генетическое программирование, алгоритм грамматической эволюции, декартово генетическое программирование, нелинейные модели, биоинспирированные алгоритмы, метаэвристические алгоритмы.

УДК: 519.8 + 519.7

Статья поступила: 04.12.2018
Переработанный вариант: 05.04.2019

DOI: 10.15372/SJNM20200405


 Англоязычная версия: Numerical Analysis and Applications, 2020, 13:4, 349–359

Реферативные базы данных:


© МИАН, 2024