Аннотация:
Цель данной работы показать преимущества использования нестандартных конечно-разностных (НСКР) численных схем для решения обыкновенных дифференциальных уравнений (ОДУ) и уравнений в частных производных (УЧП), некоторые свойства точного решения которых, например положительность, заранее известны. В качестве основного источника рассматривается работа Миккенса [14], автор которой выводит НСКР-схемы для ОДУ и УЧП, описывающие реальные явления и поэтому широко используемые в приложениях. Мы продемонстрируем, что НСКР-методы могут иметь более высокий порядок сходимости, чем соответствующие классические методы, а также сформулируем условия, гарантирующие устойчивость анализируемых схем. Кроме того, мы приводим углубленные численные тесты, сравнивая классические методы с НСКР-методами, предложенными Миккенсом, и определяя, когда последние имеют явное преимущество.
Ключевые слова:нестандартные конечно-разностные методы, положительные решения, точные схемы, обыкновенные дифференциальные уравнения, уравнения в частных производных.