RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирский журнал вычислительной математики // Архив

Сиб. журн. вычисл. матем., 2023, том 26, номер 1, страницы 57–75 (Mi sjvm829)

Кусочно-параболическая реконструкция физических переменных в методе HLL при решении уравнений релятивистской гидродинамики

И. М. Куликов, Д. А. Караваев

Институт вычислительной математики и математической геофизики Сибирского отделения Российской академии наук, просп. Акад. Лаврентьева, 6, Новосибирск, 630090

Аннотация: В статье изложена одна конструкция оригинального метода Harten-Lax-van Leer (HLL) для решения задач релятивистской гидродинамики с использованием кусочно-параболического представления физических переменных. Такое представление является оптимальным в части баланса алгоритмической сложности и диссипации между кусочно-линейным и кусочно-кубическим представлениями. Построенный численный метод позволяет воспроизводить решения с малой диссипацией на разрывах. Метод верифицирован на задачах о распаде разрыва в одномерной и двумерной постановках. На одномерных задачах о распаде разрыва исследован порядок точности построенной численной схемы. Метод также протестирован на характерных астрофизических постановках задач: взаимодействие релятивистских струй, столкновение облаков на релятивистских скоростях, взрыв сверхновой.

Ключевые слова: математическое моделирование, вычислительная астрофизика, метод HLL.

УДК: 519.6

Статья поступила: 17.01.2022
Переработанный вариант: 06.09.2022

DOI: 10.15372/SJNM20230105



© МИАН, 2024