RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирский журнал вычислительной математики // Архив

Сиб. журн. вычисл. матем., 2024, том 27, номер 2, страницы 189–209 (Mi sjvm870)

Эффективно реализуемые приближенные модели случайных функций в стохастических задачах теории переноса частиц

Г. А. Михайловab, Г. З. Лотоваab, И. Н. Медведевab

a Институт вычислительной математики и математической геофизики Сибирского отделения Российской академии наук, Новосибирск, Россия
b Новосибирский национальный исследовательский государственный университет (НГУ), Новосибирск, Россия

Аннотация: Представлены разработанные авторами эффективные аппроксимации случайных функций, численно моделируемые для исследования стохастического процесса переноса частиц, включая задачи о флуктуациях критичности процесса в случайных размножающих средах. Построены эффективные корреляционно-рандомизированные алгоритмы аппроксимации ансамбля траекторий частиц с использованием корреляционной функции или только корреляционного масштаба среды. Сформулирована простейшая сеточная модель изотропного случайного поля, воспроизводящая заданную среднюю корреляционную длину, что обеспечивает высокую точность решения стохастических задач переноса при малом корреляционном масштабе. Предлагаемые алгоритмы апробированы при решении тестовой задачи о переносе гамма-квантов и задачи оценки сверхэкспоненциального среднего потока частиц в случайной размножающей среде.

Ключевые слова: численное статистическое моделирование, случайная среда, поле Вороного, метод максимального сечения, корреляционно-рандомизированные алгоритмы, сеточная аппроксимация, поток частиц, сверхэкспоненциальная асимптотика, погрешность оценок, трудоемкость вычислений.

УДК: 519.245

Статья поступила: 27.11.2023
Переработанный вариант: 27.12.2023

DOI: 10.15372/SJNM20240205



© МИАН, 2025