Аннотация:
Теорема Геронимуса о том, что мера, которой соответствует функция Каратеодори с достаточно малыми параметрами Шура, имеет носитель, совпадающий со всей единичной окружностью, доказана в многоточечном варианте, в котором точки интерполяции непрерывной дроби, в которую раскладывается функция Каратеодори, имеют предельное распределение (в классической теореме Геронимуса все точки интерполяции сосредоточены в нуле).
Введены в рассмотрение параметры Геронимуса и Шура мер с носителем на действительной прямой. Показано, что для меры с носителем на действительной прямой и соответствующей ей функции Неванлинны имеют место аналог теоремы Геронимуса, а также аналоги некоторых других теорем о мерах с носителем на единичной окружности.
Библиография: 18 названий.
Ключевые слова:непрерывные дроби, ортогональные рациональные функции, параметры Геронимуса и Шура, функции Каратеодори и Неванлинны.