Аннотация:
Топологической эквивалентности маломерных потоков Морса–Смейла без неподвижных точек (НМС-потоков) в предположениях различной общности посвящен целый ряд работ. Начиная с размерности 4 имеется пока незначительное число классификационных результатов. Однако известно, что существуют четырехмерные неособые потоки с дико вложенными инвариантными седловыми многообразиями. В настоящей статье рассмотрен класс неособых потоков Морса–Смейла, заданных на замкнутых ориентируемых 4-многообразиях и имеющих единственную седловую орбиту, которая является нескрученной. Установлено, что полным инвариантом для них является класс эквивалентности узла, вложенного в многообразие $\mathbb S^2\times\mathbb S^1$. По любому узлу в $\mathbb S^2\times\mathbb S^1$ построен стандартный представитель в классе рассматриваемых потоков. Также доказано, что несущим многообразием всех таких потоков является многообразие $\mathbb S^3\times\mathbb S^1$.
Библиография: 24 названия.