Аннотация:
Получены некоторые необходимые и достаточные условия сильной непрерывности представлений топологических групп в рефлексивных пространствах Фреше. В частности, показано, что представление $\pi$ топологической группы $G$ в рефлексивном пространстве Фреше непрерывно в сильной операторной топологии в том и только том случае, если для некоторого числа $q$, $0\le q<1$, для любой окрестности $U$ нулевого элемента в $E$, ее поляры $\mathring{U}$ в сопряженном пространстве $E^*$ и для любого вектора $\xi$ в $U$ и любого элемента $f\in\mathring{U}$ выполняется неравенство $|f(\pi(g)\xi-\xi)|\le q$.
Библиография: 26 названий.