RUS  ENG
Полная версия
ЖУРНАЛЫ // Математический сборник // Архив

Матем. сб., 1992, том 183, номер 10, страницы 13–44 (Mi sm1078)

Эта публикация цитируется в 11 статьях

Эллиптические задачи с условиями излучения на ребрах границы

С. А. Назаров, Б. А. Пламеневский


Аннотация: Изучаются постановки эллиптических краевых задач, связанные с добавлением условий излучения на ребрах кусочно-гладкой границы $\partial G$ области $G\subset \mathbb R^n$. Такие постановки приводят к фредгольмовым операторам в подходящих функциональных пространствах с весовыми нормами. Основным средством описания является обобщенная формула Грина, содержащая помимо обычных граничных интегралов еще и интегралы по ребру $M$ от билинейных выражений, образованных коэффициентами асимптотики решений вблизи $M$. Таким образом, ребро и $(n-1)$-мерная гладкая часть границы уравниваются в правах – и $M$, и $\partial G\setminus M$ представлены своими вкладами в обобщенную формулу Грина. Это позволяет строить теорию эллиптических задач, в которой обобщенная формула Грина принимает на себя роль обычной формулы Грина в гладкой ситуации.
Библиография: 17 названий.

УДК: 517.9

MSC: Primary 35J55; Secondary 46E35, 26B20, 47A53

Поступила в редакцию: 12.04.1991


 Англоязычная версия: Russian Academy of Sciences. Sbornik. Mathematics, 1994, 77:1, 149–176

Реферативные базы данных:


© МИАН, 2024