Аннотация:
Для случая $k+r>2$ доказывается следующая теорема.
Теорема. Пусть $k\in{\mathbb N}$, $r\in{\mathbb N}$, $I:=[-1,1]$. Если функция
$f=f(x)$ не убывает на $I$ и имеет $r$ непрерывных производных на $I$, то для каждого натурального $n\geqslant r+k-1$ найдется неубывающий на $I$ алгебраический многочлен $P_n=P_n(x)$ степени $\leqslant n$ такой, что при всех $x\in I$ $$
|f(x)-P_n(x)|\leqslant c\biggl({1\over n^2}+{\sqrt {1-x^2}\over n}\,\biggr)^r
\omega _k\biggl(f^{(r)};{1\over n^2}+{\sqrt{1-x^2}\over n}\,\biggr), \qquad
c=c(r,k),
$$
где $\omega _k(f^{(r)};t)$ – модуль непрерывности порядка $k$ функции
$f^{(r)}=f^{(r)}(x)$.
Библиография: 16 названий.