Аннотация:
Доказывается, что ряд Тейлора мероморфной функции двух переменных абсолютно сходится в замкнутом единичном бикруге $\overline U^2$, если эта функция удовлетворяет в $\overline U^2$ условию Гёльдера с показателем $1/2$,
в то время, как для любого $\varepsilon>0$ существует рациональная функция с показателем Гёльдера $1/2-\varepsilon$, для которой указанный ряд расходится. Этот результат решает проблему устойчивости двумерных цифровых рекурсивных фильтров. При его доказательстве исследована структура асимптотического поведения коэффициентов Тейлора мероморфной функции двух переменных.