Аннотация:
Исследуется поведение при $t\to\infty$ фундаментального решения $G(x,s,t)$ задачи Коши для уравнения $u_t=u_{xx}-a(x)u$ ($x\in\mathbf R^1$, $t>0$) в случае, когда скорость убывания коэффициента $a(x)$ при $x\to\pm\infty$ критическая:
$$
a(x)=a_2^\pm x^{-2}+\sum_{i=3}^\infty a_i^\pm x^{-i}\qquad(x\to\pm\infty).
$$
Построено и обосновано асимптотическое разложение фундаментального решения $G(x,s,t)$ при $t\to\infty$ для всех $x,s\in\mathbf R^1$. Фундаментальное решение убывает степенным образом и скорость убывания определяется величинами $a_2^\pm$.
Библиография: 8 названий.