Аннотация:
Рассматриваются $m$-угловые особые точки (при $m=1$ являющиеся краевыми) гладких функций с невырожденными вторыми дифференциалами. Изучаются бифуркационные диаграммы функций (угловой особенности) и асимптотические представления бифурцирующих условных экстремалей (в угле). При $m=2,3$ описаны мягкие бифуркации условных минимумов. Приведены примеры, иллюстрирующие возможности приложений угловых особенностей к нелинейным вариационным уравнениям математической физики.
Рисунков: 4
Библиография: 29 названий.