RUS  ENG
Полная версия
ЖУРНАЛЫ // Математический сборник // Архив

Матем. сб., 1987, том 132(174), номер 3, страницы 352–370 (Mi sm1861)

Эта публикация цитируется в 10 статьях

Об эпиморфности оператора свертки в выпуклых областях из $\mathbf C^l$

В. В. Моржаков


Аннотация: Пусть $D$ – выпуклая область, а $K$ – выпуклый компакт в $\mathbf C^l$; $H(D)$ – пространство аналитических в $D$ функций, наделенное топологией компактной сходимости, $H(K)$ – пространство ростков аналитических на $K$ функций с естественной топологией индуктивного предела; $H'(K)$ – пространство, сопряженное к $H(K)$. Всякий функционал $T\in H'(K)$ порождает оператор свертки: $(\check Ty)(z)=T_\zeta(y(z+\zeta))$, $y\in H(D+K)$, $z\in D$, который действует непрерывно из $H(D+K)$ в $H(D)$. Пусть, далее, $(\mathscr FT)(z)=T_\zeta(\exp\langle z,\zeta\rangle)$ – преобразование Фурье–Бореля функционала $T\in H'(K)$.
В работе доказана
Теорема. {\it Пусть $D$ – ограниченная выпуклая область в $\mathbf C^l$ с границей класса $C^1$ или $D=D_1\times\dots\times D_l,$ где $D_j$ – ограниченные плоские выпуклые области с границами класса $C^1$ и $T\in H'(K)$. Для того чтобы $\check T(H(D+K))=H(D),$ необходимо и достаточно$,$ чтобы
{\rm1)} $\mathscr L^*_{\mathscr FT}(\zeta)=h_K(\zeta)$ $\forall\,\zeta\in\mathbf C^l;$
{\rm2)} $(\mathscr FT)(z)$ – функция вполне регулярного роста в $\mathbf C^l$ в смысле слабой сходимости в $D'(\mathbf C^l)$.}
Здесь $\mathscr L^*_{\mathscr FT}(\zeta)=\varlimsup_{z\to\zeta}\, \varlimsup_{r\to\infty }\frac{\ln|(\mathscr FT)(rz)|}{r}$ – регуляризованный радиальный индикатор целой функции $(\mathscr FT)(z)$, а $h_K(\zeta)$ – опорная функция компакта $K$.
Библиография: 29 названий.

УДК: 517.55

MSC: 32A30, 30D99

Поступила в редакцию: 26.11.1985


 Англоязычная версия: Mathematics of the USSR-Sbornik, 1988, 60:2, 347–364

Реферативные базы данных:


© МИАН, 2024