Аннотация:
В статье дано описание гомотопического типа спектров $k\langle n\rangle$, представляющих теории бордизмов с особенностями $\pi_*(k\langle n\rangle)=Z_{(p)}[t]$, $\dim t=2p^n-2$. Инвариантами башни Постникова спектра $k\langle n\rangle$ являются высшие операции $\widetilde Q_n^{(s)}$, где $\widetilde Q_n^{(0)}\in HZ_{(p)}*(HZ_{(p)})$, элемент $\widetilde Q_n^{(s+1)}$ строится по соотношению $\widetilde Q_n^{(0)}\widetilde Q_n^{(s)}=0$. Порядок высшей операции, т.е. порядок соответствующего элемента $\alpha_s$ в когомологиях этажа $k^{s-1}\langle n\rangle$ равен $p^s$. Кроме того, решается вопрос о действии высших операций $\widetilde Q_n^{(s)}$ на классах Тома векторных и сферических расслоений, что дает необходимые и достаточные условия ориентируемости векторных и сферических расслоений в $k\langle n\rangle$-теориях.
Библиография: 10 названий.